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Hamiltonian and BRST Formulations of a Two-
Dimensional Abelian Higgs Model in the Broken
Symmetry Phase
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The Hamiltonian and BRST formulations of an Abelian Higgs model involving
the electromagnetic vector gauge field are investigated in one-space, one-time
dimension in the broken symmetry phase, where the phase f(x, t) of the complex
matter field F(x, t) carries the charge degree of freedom of the complex matter
field and is, in fact, akin to the Goldstone boson.

1. INTRODUCTION

Quantum electrodynamics (QED) models with a Higgs potential namely,
Abelian Higgs models (AHM) involving the vector gauge field Am (x, t) in
lower [one-space, one-time (1 1 1) or two-space, one-time (2 1 1)] dimen-
sions have attracted wide interest in recent years [1–8]. These models, involv-
ing a Maxwell term which accounts for the kinetic energy of the vector
gauge field Am(x, t) [1–6], represent field-theoretic models which could be
considered effective theories of Ginsburg–Landau type for superconductivity
[6]. These models are in fact relativistic generalizations of Ginsburg–Landau
(GL) phenomenological field theory models of superconductivity [5]. Some
basics of the AHM in the symmetry phase (SP) [2–4] as well as in the broken
symmetry phase (BSP) [9] in one-space, one-time dimension are recapitulated
in the next section [2–4].

Quantization of field theory models has also been a challenging problem.
In the present work we consider a consistent Hamiltonian [10] and Becchi–
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Rouet–Stora–Tyutin (BRST) [11–14] quantization of the AHM in (1 1 1)
dimension with specific gauge choices [11–14].

Further, in the usual Hamiltonian formulation of a gauge-invariant theory
under some gauge-fixing conditions (GFC) one necessarily destroys the gauge
invariance of the theory by fixing the gauge (which converts a set of first-
class constraints into a set of second-class constraints, implying a breaking
of gauge invariance under the gauge fixing). To achieve the quantization of
a gauge-invariant theory such that the gauge invariance of the theory is
maintained even under gauge fixing, one goes to a more generalized procedure
called the BRST formulation [11–14]. In the BRST formulation of a gauge-
invariant theory, the theory is rewritten as a quantum system that possesses
a generalized gauge invariance called BRST symmetry. For this one enlarges
the Hilbert space of the gauge-invariant theory and replaces the notion of
the gauge transformation, which shifts operators by c-number functions, by
a BRST transformation, which mixes operators having different statistics. In
view of this, one introduces new anticommuting variables c and c called the
Faddeev–Popov ghost and anti-ghost fields, which are Grassmann numbers
on the classical level and operators in the quantized theory, and a commuting
variable b called the Nakanishi–Lautrup field [11–14]. In the BRST formula-
tion, one thus embeds a gauge-invariant theory into a BRST-invariant system,
and the quantum Hamiltonian of the system (which includes the gauge-fixing
contribution) commutes with the BRST charge operator Q as well as anti-
BRST charge operator Q. The new symmetry of the quantum system (the
BRST symmetry) that replaces the gauge invariance is maintained (even
under the gauge fixing) and hence projecting any state onto the sector of
BRST and anti-BRST invariant state yields a theory that is isomorphic to
the original gauge-invarinat theory.

The Hamiltonian and BRST formulations of the AHM in the SP [2–4]
have been studied in ref. 2. In the present work the model is studied in the
BSP [9]. After a brief recapitulation of the basics of the AHM (in the SP as
well as in the BSP) in the next section, its Hamiltonian formulation in the
BSP is considered in Section 3 and its BRST formulation also in the BSP
is studied in Section 4.

2. SOME BASICS OF THE AHM: A RECAPITULATION

2.1. AHM in the Symmetry Phase

The two-dimensional AHM in the symmetry phase is defined by the
action [2–4]
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S 5 # +(F, F*, Am) d 2x (2.1a)

where

+ 5 2
1

4e2 Fmn Fmn 1 (D̃mF*)(DmF) 2 V(.F.2) (2.1b)

V(.F.2) 5 a0 1 a2.F.2 1 a4.F.4 (2.1c)

5 l(.F.2 2 F2
0)2; F0 Þ 0 (2.1d)

Dm 5 (­m 1 ieAm); D̃m 5 (­m 2 ieAm) (2.1e)

Fmn 5 (­mAn 2 ­nAm) (2.1f)

gmn :5 diag (11, 21); m, n 5 0, 1 (2.1g)

The model is known to possess stable, time-independent (i.e., static), classical
solutions called topological solitons of the vortex type [1–4, 7].

In a quantum theory of the kind that we are considering here, for a
specific form of the Higgs potential which admits static solutions, in general,
one could have two degenerate minima, a symmetry-breaking minimum and
a symmetry-preserving minimum, and correspondingly the theory could have
two types of classical solutions, topological vortices with quantized magnetic
flux as we have in the Ginsburg–Landau model, where it is possible to define
a conserved topological current and a corresponding topological charge which
is quantized and is related to the topological quantum number called as the
winding number, and as another type of classical solution, nontopological
solitons with nonvanishing, but not necessarily quantized magnetic flux
[2–4, 7].

The main new result of such studies is the identification of the Ginsburg–
Landau theory with the static solution of the Higgs type of Lagrangian [1–7].

Further, in the present AHM, considered with a Higgs potential in the
form of a double-well potential with F0 Þ 0, the spontaneous symmetry
breaking (SSB) takes place due to the noninvariance of the lowest (ground)
state of the system (because F0 Þ 0) under the operation of the local U(1)
symmetry. Also, the symmetry that is broken is still a symmetry of the system
and it is manifested in a manner other than the invariance of the lowest or
ground state (F0) of the system. However, no Goldstone boson occurs here
and instead the gauge field acquires a mass through some kind of Higgs
mechanism and the symmetry is manifested in the Higgs mode.

In general one can keep the Higgs potential rather general, i.e., without
making any specific choice for the parameters of the potential except that
they are chosen such that the potential remains a double-well potential with
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F0 Þ 0. For further details we refer to refs. 2–4 and 7 and references therein.
The Hamiltonian and BRST formulations of the AHM in the SP have been
studied in ref. 2. In the present work the model is studied in the BSP.

2.2. AHM in the Broken Symmetry Phase (BSP)

In the present work we study the AHM in the BSP [9] of the complex
matter field F [[ F (x, t)]. For this purpose, for the complex matter field
F we take

F 5 F0 exp[if]; F0 Þ 0 (2.2)

Here f [[f (x, t)] is the phase of the complex scalar field F. The action of
the theory [2–4] in the BSP [9] then becomes

S 5 # + dx dt (2.3a)

+ :5 F21
4e2 FmnFmn 1

1
2

(­m f 1 eAm) (­mf 1 eAm)G (2.3b)

It is important to notice that the vector gauge boson Am becomes massive in
the BSP. This mass generation of the vector gauge boson takes place perhaps
through a mechanism similar to the Higgs mechanism [9]. The phase f
carries the charge degree of freedom of F and is in fact akin to the Goldstone
boson and is to be treated as a dynamical field [9]. Also, the ground state
in the BSP is not rotational invariant. Such studies of the theory in the
broken-symmetry (superfluid) state could be relevant for effective theories
in condensed matter as the action of the theory describes the low-lying
excitations in the BSP [9]. In the present work we study the Hamiltonian
and BRST formulations of the theory described by the action (2.3) (in the
next two sections, respectively).

3. HAMILTONIAN FORMULATION

For considering the Hamiltonian formulation of the AHM in the BSP
in the instant form (i.e., on the hyperplanes x0 5 const), we express the
action of the theory (2.3) in component form, which in (1 1 1) dimensions
reads [2–4, 7]

S 5 # + dx dt (3.1a)

+ 5 F 1
2e2 [­1A0 2 ­0A1]2 1

1
2

[(­0f)2 2 (­1f)2]
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1 e[A0(­0f) 2 A1(­1f)] 1
1
2

e2(A2
0 2 A2

1)G (3.1b)

Fmn 5 (­mAn 2 ­nAm), gmn :5 diag(11, 21); m, n 5 0, 1 (3.1c)

In the following, we consider the Hamiltonian formulation of the theory
described by the action (3.1). The Euler–Lagrange field equations of motion
of the theory obtained from (3.1) are

F2 ­m­mf 2 e­mAmfG 5 0 (3.2a)

F2 e(­1f) 2 e2A1 1
1
e2 ­0F10G 5 0 (3.2b)

Fe(­0f) 1 e2A0 1
1
e2 ­1F01G 5 0 (3.2c)

The canonical momenta obtained from (3.1) are

p :5
­+

­(­0f)
5 ­0f 1 eA0 (3.3a)

P0 :5
­+

­(­0 A0)
5 0 (3.3b)

E(:5 P1) 5
­+

­(­0 A1)
5

21
e2 (­1 A0 2 ­0 A1) (3.3c)

Here p, P0, and E (:5 P1) are the momenta canonically conjugate respectively
to f, A0, and A1. Equations (3.3) imply that the theory possesses one pri-
mary constraint:

x1 5 P0 ' 0 (3.4)

The canonical Hamiltonian density corresponding to + of (3.1b) is

*c :5 [p(­0f) 1 P0(­0 A0) 1 E(­0 A1) 2 +] (3.5a)

5 F1
2

(p2 1 e2E 2 1 (­1f)2 1 2eA1(­1f) 1 e2A2
1)

1 E­1A0 2 epA0G (3.5b)

After including the primary constraint x1 in the canonical Hamiltonian density
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*c with the help of the Lagrange multiplier field u, the total Hamiltonian
density *T can be written as

*T :5 *c 1 P0u (3.6)

The Hamiltonian equations obtained from the total Hamiltonian

HT 5 # *T dx (3.7)

are

­0f 5
­HT

­p
5 [p 2 eA0] (3.8a)

2­0p 5
­HT

­f
5 [2­1­1f 2 e(­1A1)] (3.8b)

­0A0 5
­HT

­P0
5 u (3.8c)

2­0P0 5
­HT

­A0
5 [2­1E 2 ep] (3.8d)

­0A1 5
­HT

­E
5 [e2E 1 ­1A0] (3.8e)

2­0E 5
­HT

­A1
5 [e2A1 1 e­1f] (3.8f)

­0u 5
­HT

­Pu
5 0 (3.8g)

2­0Pu 5
­HT

­u
5 P0 (3.8h)

These are the equations of motion of the theory that preserve the constraints
of the theory in the course of time. For the Poission bracket {?,?}p of two
functions A and B, we choose the convention

{A(x), B( y)}p :5 # dz o
a
F­A(x)

­qa(z)
­B( y)
­pa(z)

2
­A(x)
­pa(z)

­B( y)
­qa(z)G (3.9)

Demanding that the primary constraint x1 be preserved in the course of time,
one obtains the secondary Gauss-law constraint of the theory as
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x2 :5 {x1, *T}p 5 [­1E 1 ep] ' 0 (3.10)

The preservation of x2 for all times does not give rise to any further constraints.
The theory is thus seen to possess only two constraints x1 and x2:

x1 5 P0 ' 0; x2 5 [­1E 1 ep] ' 0 (3.11)

Further, the matrix of the Poisson brackets of the constraints xi is seen to be
a null matrix, implying that the set of constraints xi is first class and that the
theory described by (3.1) is a gauge-invariant theory. The action of the
theory S(3.1) is, in fact, seen to be invariant under the local-vector gauge
transformations (LVGT):

dA0 5 2­0b, dA1 5 2­1b, df 5 eb, du 5 2­0­0b (3.12a)

dp 5 dPu 5 dP0 5 dE 5 0 (3.12b)

where b [ b(x, t) is an arbitrary function of its arguments. The generator
of the LVGT is the charge operator of the theory:

J 0 5 # j0 dx 5 # dx Feb(­0f 1 eA0) 1
1
e2 (­1b) (­1A0 2 ­0A1)G (3.13)

The current operator of the theory is

J 1 5 # j1 dx 5 # dx F2eb(­1f 1 eA1) 2
1
e2 (­0b)(­1A0 2 ­0A1)G (3.14)

The divergence of the vector-current density, namely, ­m jm is therefore seen
to vanish, so that

­m jm 5 ­0 j 0 1 ­1 j 1 5 0 (3.15)

implying that the theory possesses (at the classical level) a local vector-gauge
symmetry (LVGS).

In order to quantize the theory using Dirac’s procedure we convert the
set of first-class constraints of the theory xi into a set of second-class con-
straints by imposing, arbitrarily, some additional constraints on the system
called gauge-fixing conditions or the gauge constraints. For this purpose, for
the present theory, we could choose, for example, the set of gauge-fixing
conditions (A) r1 5 A0 5 0 and r2 5 A1 5 0 and (B) c1 5 A0 5 0 and
c2 5 ­1A1 5 0; corresponding to these choice of the gauge-fixing conditions,
we have the following two sets of constraints under which the quantization
of the theory could be studied:
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Set A:

j1 5 x1 5 P0 ' 0 (3.16a)

j2 5 x2 5 [­1E 1 ep] ' 0 (3.16b)

j3 5 r1 5 A0 ' 0 (3.16c)

j4 5 r2 5 A1 ' 0 (3.16d)

Set B:

h1 5 x1 5 P0 ' 0 (3.17a)

h2 5 x2 5 [­1E 1 ep] ' 0 (3.17b)

h3 5 c1 5 A0 ' 0 (3.17c)

h4 5 c2 5 ­1A1 ' 0 (3.17d)

The matrices of the Poisson brackets among the set of constraints ji and hi

are now seen to be nonsingular (and therefore invertible) and are omitted
here for the sake of bravity.

The Dirac bracket {?, ?}D of the two functions A and B is defined as [10]

{A, B}D 5 {A, B}p 2 ## dw dz o
a,b

[{A, Ga(w)}p[D21
ab(w, z)]

3 {Gb(z), B}p] (3.18)

where Gi are the constraints of the theory and Dab(w, z) [5{Ga(w), Gb(z)}p]
is the matrix of the Poisson brackets of the constraints Gi. The transition to
quantum theory is made by the replacement of the Dirac brackets by the
operator commutation relations according to

{A, B}D → (2i)[A, B], i 5 !21 (3.19)

Finally, the nonvanishing equal-time commutators of the theory in case A,
i.e., in the gauge A0 5 0 and A1 5 0, are obtained as [12–14]

[f(x, t), p( y, t)] 5 id(x 2 y) (3.20a)

[A1(x, t), E( y, t)] 5 2id(x 2 y) (3.20b)

[f(x, t), E( y, t)] 5 2
1
2

ie e(x 2 y) (3.20c)

where e(x 2 y) is a step function defined as

e(x 2 y) :5 H11, (x 2 y) . 0
21, (x 2 y) , 0

(3.21)

The nonvanishing equal-time commutators of the theory in case B, i.e., in
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the gauge A0 5 0 and ­1A1 5 0, are seen to be identical with those of case
A, as they should, and are also given by (3.20). This is not surprising in
view of the fact that the gauges A1 5 0 and ­1A1 5 0 conceptually mean
the same thing.

For later use, for considering the BRST formulation of the theory,
we convert the total Hamiltonian density into the first-order Lagrangian
density +IO:

+IO :5 [p(­0f) 1 P0(­0 A0) 1 E(­0 A1) 1 Pu(­0u) 2 *T]

5F2
1
2

(p2 1 e2E 2 1 (­1f)2 1 2eA1(­1f) 1 e2A2
1)

1 p(­0f) 1 E(­0 A1)G (3.22)

In the above equation, the term P0(­0 A0 2 u) drops out in view of Hamil-
ton’s equations.

4. BRST FORMULATION

4.1. BRST Invariance

For the BRST formulation of the model, we rewrite the theory as a
quantum system that possess the generalized gauge invariance called BRST
symmetry. For this, we first enlarge the Hilbert space of our gauge-invariant
theory and replace the notion of gauge transformation, which shifts operators
by c-number functions, by a BRST transformation, which mixes operators
with Bose and Fermi statistics; we then introduce new anticommuting variable
c and c (Grassmann numbers on the classical level, operators in the quantized
theory) and a commuting variable b such that [11–14]

d̂f 5 ec; d̂A1 5 2­1c; d̂A0 5 2­0c (4.1a)

d̂p 5 d̂E 5 d̂P0 5 d̂Pu 5 0; d̂u 5 2­0­0c (4.1b)

d̂c 5 0; d̂c 5 b; d̂b 5 0 (4.1c)

with the property d̂2 5 0. We now define a BRST-invariant function of the
dynamical variables to be a function f (p, E, P0, Pu , pb , Pc , Pc, f, A1, A0,
u, b, c, c) such that d̂f 5 0.

4.2. Gauge Fixing in the BRST Formulism

Performing gauge fixing in the BRST formalism implies adding to the
first-order Lagrangian density +IO a trivial BRST-invariant function [11–14].
We thus write
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+BRST 5 H2
1
2

[p2 1 e2E 2 1 (­1f)2 1 2eA1(­1f) 1 e2A2
1]

1 p(­0f) 1 E(­0 A1) 1 d̂Fc12­0 A0 1
1
e

f 2
1
2

b2GJ (4.2)

The last term in the above equation is the extra BRST-invariant gauge-fixing
term. After one integration by parts, the above equation can be written as

+BRST 5 H2
1
2

[p2 1 e2E 2 1 (­1f)2 1 2eA1(­1f) 1 e2A2
1]

1 p(­0f) 1 E(­0A1) 1 b(2­0 A0 1
1
e

f)

2
1
2

b2 1 (­0c)(­0c) 2 c cJ (4.3)

Proceeding classically, we see that the Euler–Lagrange equation for b reads

2b 5 1­0 A0 2
1
e

f2 (4.4)

The requirement d̂b 5 0 then implies

2d̂b 5 Fd̂(­0 A0) 2
1
e

d̂fG (4.5)

which in turn implies

2­0­0c 5 c (4.6)

The above equation is also an Euler–Lagrange equation obtained by the
variation of +BRST with respect to c. In introducing momenta, one has to be
careful in defining those for the fermionic variables. We thus define the
bosonic momenta in the usual manner so that

P0 :5
­

­(­0A0)
+BRST 5 2b (4.7)

but for the fermionic momenta with directional derivatives we set

Pc :5 +BRST
­
←

­(­0c)
5 c̊; Pc :5

­
→

­(­0c)
+BRST 5 c̊ (4.8)

implying that the variable canonically conjugate to c is (­0c) and the variable
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conjugate to c is (­0c). For writing the Hamiltonian density from the Lagran-
gian density in the usual manner we remember that the former has to be
Hermitian, so that

*BRST 5 [pf̊ 1 P0 Å0 1 EÅ1 1 Puů 1 Pcc̊ 1 c̊Pc 2 +BRST]

5 F1
2

(p2 1 e2E 2 1 (­1f)2 1 2eA1(­1f) 1 e2A2
1)

1
1
e

P0f 1
1
2

P2
0 1 PcPc 1 ccG (4.9)

We can check the consistency of (4.8) and (4.9) by looking at Hamilton’s
equations for the fermionic variables, i.e.,

­0c 5
­
→

­Pc
*BRST, ­0c 5 *BRST

­
←

­Pc
(4.10)

Thus we see that

­0c 5
­
→

­Pc
*BRST 5 Pc, ­0c 5 *BRST

­
←

­Pc
5 Pc (4.11)

is in agreement with (4.8) For the operators c, c, ­0c, and ­0c one needs to
satisfy the anticommutation relations of ­0c with c or of ­0c with c, but not
of c, with c. In general, c and c are independent canonical variables and one
assumes that

{Pc , Pc} 5 {c, c} 5 0; ­0{c, c} 5 0 (4.12a)

{­0c, c} 5 (21){­0c, c} (4.12b)

where {?, ?} means an anticommutator. We thus see that the anticommulators
in (4.12b) are nontrivial and need to be fixed. In order to fix these, we
demand that c satisfy the Heisenberg equation [11–14]

[c, *BRST] 5 i­0 c (4.13)

and using the property c2 5 c2 5 0, one obtains

[c, *BRST] 5 {­0c, c}­0c (4.14)

Equations (4.12)–(4.14) then imply

{­0 c, c} 5 (21){­0c, c} 5 i (4.15)

Here the minus sign in the above equation is nontrivial and implies the
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existence of states with negative norm in the space of state vectors of the
theory [3, 10, 11].

4.3. The BRST Charge Operator

The BRST charge operator Q is the generator of the BRST transforma-
tions (4.1). It is nilpotent and satisfies Q2 5 0. It mixes operators which
satisfy Bose and Fermi statistics. According to its conventional definition,
its commutators with Bose operators and its anticommutators with Fermi
operators for the present theory satisfy

[f, Q] 5 2ec; [A1, Q] 5 2­1c; [A0, Q] 5 ­0c (4.16a)

{c, Q} 5 2P0; {­0c, Q} 5 [2­1E 2 ep] (4.16b)

All other commutators and anticommutators involving Q vanish. The BRST
charge operator of the present theory can be written as

Q 5 # dx [ic(­1 E 1 ep) 2 i(­0 c)P0] (4.17)

This equation implies that the set of states satisfying the conditions

P0.c& 5 0 (4.18a)

[­1E 1 ep].c& 5 0 (4.18b)

belongs to the dynamically stable subspace of states .c& satisfying Q.c& 5
0, i,e., it belongs to the set of BRST-invariant states.

In order to understand the condition needed for recovering the physical
states of the theory, we rewrite the operators c and c in terms of fermionic
annihilation and creation operators. For this purpose we consider (4.6). The
solution of Eq. (4.6) gives the Heisenberg operator c(t) [and correspondingly
c(t)] as

c(t) 5 eitB 1 e2itD; c(t) 5 e2itB† 1 eitD† (4.19)

which at time t 5 0 imply

c [ c(0) 5 B 1 D; c [ c(0) 5 B† 1 D† (4.20a)

c̊ [ c̊(0) 5 i(B 2 D); c̊ [ c̊(0) 5 2i(B† 2 D†) (4.20b)

By imposing the conditions

c2 5 c2 5 {c, c} 5 {c̊, c̊} 5 0 (4.21a)

{c̊, c} 5 i 5 2{c̊, c} (4.21b)

we now obtain the equations
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B2 1 {B, D} 1 D2 5 B†2 1 {B†, D†} 1 D†2 5 0 (4.22a)

{B, B†} 1 {D, D†} 1 {B, D†} 1 {B†, D} 5 0 (4.22b)

{B, B†} 1 {D, D†} 2 {B, D†} 2 {B†, D} 5 0 (4.22c)

{B, B†} 2 {D, D†} 2 {B, D†} 1 {D, B†} 5 21 (4.22d)

{B, B†} 2 {D, D†} 1 {B, D†} 2 {D, B†} 5 21 (4.22e)

with the solution

B2 5 D2 5 B†2 5 D†2 5 0 (4.23a)

{B, D} 5 {B†, D} 5 {B, D†} 5 {B†, D†} 5 0 (4.23b)

{B†, B} 5 2
1
2
; {D†, D} 5

1
2

(4.23c)

We now let .0 & denote the fermionic vacuum for which

B.0& 5 D.0& 5 0 (4.24)

Defining .0& to have norm one, (4.23c) implies

^0.BB†.0& 5 2
1
2
; ^0.DD†.0& 5 1

1
2

(4.25)

so that

B†.0& Þ 0; D†.0& Þ 0 (4.26)

The theory is thus seen to possess negative norm states in the fermionic
sector. The existence of these negative norm states as free states of the
fermionic part of *BRST is, however, irrelevant to the existence of physical
states in the orthogonal subspace of the Hilbert space.

In terms of annihilation and creation operators,

*BRST 5 F1
2

(p2 1 e2E 2 1 (­1f)2 1 2eA1(­1f) 1 e2A2
1)

1
1
e

P0f 1
1
2

P2
0 1 2(B†B 1 D†D)G (4.27)

and the BRST charge operator Q is

Q 5 # dx iFB1­1E 1 ep 2 iP02 1 iD1­1E 1 ep 1 iP02G (4.28)

Now because Q.c& 5 0, the set of states annihilated by Q contains not only
the set of states for which (4.18) holds, but also additional states for which
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B.c& 5 D.c& 5 0 (4.29a)

P0.c& Þ 0 (4.29b)

[­1E 1 ep].c& Þ 0 (4.29c)

The Hamiltonian is also invariant under the anti-BRST transformation
given by

d̂f 5 2ec, d̂A0 5 ­0c, d̂A1 5 ­1c, d̂u 5 ­0­0c (4.30a)

d̂p 5 d̂E 5 d̂P0 5 d̂Pu 5 0 (4.30b)

d̂c 5 0, d̂c 5 2 b, d̂b 5 0 (4.30c)

with the generator or anti-BRST charge

Q 5 # dx F2ic(­1E 1 ep) 1 i(­0c)P0G
5 # dx F2iB†1­1E 1 ep 1 iP02 2 iD†1­1E 1 ep 2 iP02G (4.31)

we also have

­0Q 5 [Q, HBRST] 5 0 (4.32a)

­0Q 5 [Q, HBRST] 5 0 (4.32b)

with

HBRST 5 # dx *BRST (4.32c)

and we further impose the dual condition that both Q and Q annihilate
physical states, implying that

Q.c& 5 0 and Q.c& 5 0 (4.33)

The states for which (4.18) hold satisfy both of these conditions and, in
fact, are the only states satisfying both of these conditions, since, although
with (4.23)

2(B†B 1 D†D) 5 22(BB† 1 DD†) (4.34)

there are no states of this operator with B†.0& 5 0 and D†.0& 5 0 [cf. (4.26)],
and hence no free eigenstates of the fermionic part of HBRST which are
annihilated by each of B, B†, D, D†. Thus the only states satisfying (4.33)
are those satisfying the constraints (3.11).
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Further, the states for which (4.18) holds satisfy both the conditions
(4.33) and, in fact, are the only states satisfying both of these conditions
because in view of (4.21), one cannot have simultaneously c, ­0c and c, ­0c
applied to .c& to give zero. Thus the only states satisfying (4.34) are those
that satisfy the constraints of the theory (3.11) and they belong to the set of
BRST-invariant and anti-BRST-invariant states.

Alternatively, one can understand the above point in terms of fermionic
annihilation and creation operators as follows. The condition Q.c& 5 0 implies
that the set of states annihilated by Q contains not only the states for which
(4.18) holds, but also additional states for which (4.29) holds. However, Q.c&
5 0 guarantees that the set of states annihilated by Q contains only the states
for which (4.18) holds, simply because B†.c& Þ 0 and D†.c& Þ 0. Thus in
this alternative way we also see that the states satisfying Q.c& 5 Q.c& 5 0
[i.e., satisfying (4.33)] are only those states that satisfy the constraints of the
theory and also that these states belong to the set of BRST-invariant and
anti-BRST-invariant states.
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